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SUMMARY 

The interaction of two-dimensional water waves with a fixed submerged cylinder is studied using a finite 
difference scheme with boundary-fitted co-ordinates. A mixed Eulerian-Lagrangian (MEL) formulation is 
used to satisfy the fully non-linear free surface conditions. The diffraction of small-amplitude water waves by 
a cylinder is examined for various wavelengths and amplitudes of the incident wave. Fourier analyses of the 
incident and diffracted waves are performed to determine their spectra. An example of a large-amplitude 
wave breaking over a cylinder is also studied. The non-linear numerical solutions are compared with those 
of experiments and linear theory where appropriate. 
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1. INTRODUCTION 

In this paper we study some aspects of the interaction of non-linear water waves with fixed 
submerged bodies. In the first case we investigate the diffraction of two-dimensional water waves 
by submerged bodies. Traditionally, calculations have been performed in the frequency domain 
using linear theory to obtain the so-called reflection and transmission coefficients. Experimental 
results'-3 have shown that such theoretical results are not always adequate and fully non-linear 
simulations would often be necessary. Considerable interest has been shown in the study of 
non-linear diffraction recently. Second-order results have been obtained by Vada? while fully 
non-linear simulations have been performed by Cooker et aL5 and Ertekin and Chian6 for the 
case of solitary waves and by Cointe' for Stokes' second-order waves. Other non-linear solutions 
have been obtained where the authors were primarily interested in the values of the forces (see e.g. 
Reference 8). Extreme forces due to breaking waves have been calculated by Brevig et aL9 and 
Jagannathan" for potential flow and by Miyata et UZ." for viscous flow, the last using 
a marker-and-cell (MAC) method. We conclude by studying as a second example a case of wave 
breaking in the presence of a cylinder. 

We follow the numerical method developed by Yeung and Ananthakrishnan" for solving 
two-dimensional potential free-surface flows. Essentially, the method involves a second-order- 
accurate finite difference method for solving the Laplace equation in a time-dependent irregular 
domain using a specially developed boundary-fitted co-ordinate system. A variational method is 
used for the grid generation, which can handle steep and multivalued free surface profiles. Exact 
non-linear boundary conditions are used on the free surface, which is advanced in time by using 
Lagrangian marker  particle^.'^ 
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The computer code developed for this problem can be actually applied to fixed bodies of 
arbitrary shape, which could be floating, submerged or bottom-mounted. However, since the 
incoming waves are generated by a numerical wavemaker at a finite distance from the body, 
waves reflecting back to the wavemaker would contaminate the solution. A well known linear 
theory result is that a submerged circular cylinder in deep water has a reflection coefficient of 
zero, which was originally shown by Deani4 and later by Ursell” and Mehlum.I6 More recently 
it has been shown by Friis” and McIver and McIver” that the property is valid up to second 
order, and a generalization to higher orders has been carried out by Palm.” The fact that the 
reflection coefficient for a circle is almost zero is also well corroborated by the experimental 
results of Chiu’ and Grue and Granlund.’ Numerical results of Vada to second order4 also 
indicate the same. Hence we concentrate on this geometry. Cointe et al.” have considered a way 
to circumvent the problem of reflected waves by using ‘absorbing wavemakers’, where the 
reflected waves are selectively dissipated by a suitable free surface boundary condition, but there 
appears to be an inconsistency in separating the reflected wave field from the total wave field. 

In the present work we present results of numerical calculations where we try to simulate the 
experiments of Chiu’ and Grue and Granlund.’ The experimental observations include the 
presence of prominent higher harmonics downstream of the cylinder. Further, it is observed that 
the transmission coefficient for the fundamental wave deviates substantially from the theoretical 
linear result of unity. These deviations are particularly notable when the cylinder submergence is 
shallow. This is the domain where we conduct our simulations and endeavour to study these 
phenomena numerically. 

It is also of practical interest to calculate the interaction of large-amplitude waves with 
submerged bodies when the waves evolve into breaking forms. However, there are difficulties 
involved in setting up the correct initial and boundary conditions for a general time-dependent 
problem and comparison with experimental data, even if available, would be difficult. We provide 
here one such example of breaking wave computation, the numerical results of which are 
compared with those of Brevig et al.,’ who used a boundary integral method. One should also be 
aware that viscous effects are important in the interaction of large waves with bodies and force 
calculations from potential flow solutions may be inadequate. The advantage of the finite 
difference formulation is that the inclusion of viscous effects at a later stage can be relatively easy. 
The geometry of the domain becomes quite complicated in a breaking wave scenario. The 
solution of this type of problem will provide a stringent test on the capabilities of the grid 
generation scheme developed by Yeung and Ananthakrishnan.” 

2. FORMULATION OF THE PROBLEM 

We conduct simulation in a ‘wave tank’ with the following controllable parameters: the 
wavemaker frequency w, the depth of submergence of the centre of the cylinder from the initial 
undisturbed free surface, h, and the amplitude of a paddle-type wavemaker, A (see Figure 1). The 
frequency w determines the wavelength A (or alternately the wave number k) through the 
dispersion relation. All variables are non-dimensionalized by the cylinder radius r,  the acceler- 
ation due to gravity, g, and the density of water, p. Using an explicit relationship between the 
generated wave amplitude a (or a,) and the paddle amplitude A based on linear theory,” we can 
control the value of the former with desired precision to create small-amplitude waves. Although 
r = 1 by our non-dimensionalization, we will retain it in some expressions later, e.g. h/r, to provide 
a clearer physical meaning of the parameters in question. 
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n 

Figure 1 .  Schematic diagram of the numerical wave tank 

With the assumptions of inviscid fluid and irrotational flow we solve the Laplace equation for 
the velocity potential #, 

in the domain SZ shown in Figure 1, with the following boundary conditions. 

the dynamic condition 

v24 = 0, (1) 

On the free surface F the Dirichlet condition for # is obtained by advancing the potential using 

D+/D~ = + I V# l 2  - y, (2) 

Dx/Dt = V4,  (3) 

and its position is updated by the kinematic condition 

where D/Dt is the material derivative. These are the well known mixed Eulerian-Lagrangian 
formulation of Longuet-Higgins and Cokelet.' 

On the body and bottom of the tank the following no-flux condition is applicable: 

&=O.  (4) 

If a wavemaker is present in the simulation, the following conditions are applied on the left and 
right boundaries. On the wavemaker surface W ,  which has a prescribed sinusoidal motion, the 
appropriate normal velocity is 

271 4n = Ao sin (?), T=-. 
0 

( 5 )  

On the open boundary the Orlanski conditionz3 can be applied, i.e. the potential is advanced in 
time using the equation 

where the phase velocity c is estimated numerically by a scheme to be detailed later. At any 
particular instant of time the value of 4 obtained using equation (6) is used as the Dirichlet 
condition on the open boundary. This condition is only approximate and is expected to be 
ineffective when short waves ride on long waves. For some discussions we refer to Y e ~ n g . ' ~  

We cannot, however, use a wavemaker to generate the type of waves appropriate for studying 
the breaking of waves over a cylinder. Large-amplitude motions of the paddle are found to 
generate propagating transients that would break before reaching the cylinder and thus prevent 

4t + c 4 x  = 0, (6) 
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long-time numerical simulation. It is possible to superpose wave harmonics in such a way as to 
gmerate breaking waves at certain desired positions. Such a procedure leads to a relatively 
extensive computational domain. Hence, to circumvent the difficulties, we use‘ a domain with 
spatially periodic boundary conditions. The left and right boundaries are now treated as open 
boundaries and are allowed to move in time as the motions of the Lagrangian free surface 
particles on the top of these boundaries dictate. The free surface, bottom, and body boundary 
cclnditions remain the same. Hence we have the periodicity condition 

CP(Xl7 Y ,  t)=CP(xr, Y ,  t),  (7) 

where xl  and x, are the x-positions of the left and right boundaries respectively. The free surface, 
bottom and body boundary conditions remain the same. 

As initial conditions for the wavemaker case we take +=O and q=O on F and start the 
wavemaker from rest with zero velocity. For the breaking wave simulation we start with 
a sinusoidal wave elevation whose wavelength is equal to the length of the domain. The crest of 
the wave is located at the edges of the domain, while the cylinder is placed below the trough which 
is at the centre of the domain in the horizontal direction. 

Finally, the forces on the cylinder are calculated by direct integration of the pressure based on 
Euler’s integral: 

p =  - fjf -31Vf$l’-y. (8) 

3. NUMERICAL SCHEME 

For the numerical solution of the problem we choose the finite difference method. Even though 
a boundary integral method would be more efficient for the particular type of problem considered 
here, we have opted for the finite difference formulation so as to retain the option of including the 
effects of viscosity. This is in fact being pursued, with initial success reported in Reference 25. 

‘The problem of the varying geometry of the free surface is handled by using boundary-fitted 
co-ordinates. This method has a higher order of accuracy than ‘irregular star’ methods, which are 
the classical a l t e r n a t i ~ e . ~ ~  Furthermore, it allows good control of the resolution of the mesh at 
certain locations in the domain. 

3.1. Boundary-fitted co-ordinates 

A complete description of the grid generation technique can be found in Reference 21. For 
continuity of exposition a brief summary will be given here. 

‘To discretize the physical space (x, y) advantageously, we map it into a computational domain 
( 5 ,  v )  where the grid spacing is uniform and hence the difference formulae have simple forms. The 
differential operators in the computational space can be determined from the operators in the 
physical space once the mapping function is known. 

‘There are various ways to do the above mapping. The following method was proposed in 
Reference 2 1. 

1. An intermediate space called the ‘reference space’ (a, p)  is introduced. This is similar to the 
physical space but with simplified geometry so that the grids can be generated for this space 
with ease. The mapping from the computational to the physical space is then the product 
mapping of the two mappings (x, y)-(a, p) and (a, p)+(l, q). An illustrative example is 
shown in Figure 2. The notion of reference space was originally introduced by Steinberg and 
Roache.26 
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Physical Space 
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Figure 2. Illustration of the concept of reference space used by Yeung and Ananthakrishnan.” The computational space 
has equidistant nodes. The grid of the physical space resembles the prescribed grid of the reference space. The 

transformation in two steps as shown proves to be more advantageous 

2. The following three integrals are introduced: 

where J = x g  y ,  -x,yr is the Jacobian of the transformation (x, y)+(iJ, q), Equation (9) 
represents a measure of the difference in co-ordinate spacings between the physical and 
reference spaces. Equations (10) and (11)  represent a measure of cell area distribution and 
orthogonality in the physical space respectively. 

3. By equating to zero the first variation of a linear combination of these three integrals, which 
are functionals of iJ and 9, we obtain a set of elliptic partial differential equations for 5 and 
q.’l By solving these equations, we obtain the required mapping function. The freedom in 
choosing the weights on the three functionals gives us great flexibility in generating a grid of 
certain desired properties. This choice is usually made by utilizing some prior knowledge of 
the physics of the problem. The grid equations are solved by a mixed over- and underrelaxa- 
tion procedure. 

The above method has proved to be quite powerful in handling domains with rather unwieldy 
geometries (as Figure 16(d) will show). A high emphasis on I ,  and a slight suppression of I, have 
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allowed the grids to follow the breaking wave contours while retaining a cell area distribution 
similar to that of the reference grid. Additionally, this method makes the clustering of grids at 
appropriate locations more manageable. More examples can be found in Reference 21. 

In our implementation the field equation is discretized in the computational space using 
second-order-accurate difference schemes. The Laplace equation in the computational space ( 5 ,  q)  
reads as 

O6;C - ~u#J;,,+ a$,,,+ J 2 ( P $ <  + Q6,)=0, (12) 
where P = ~ , , + ~ y v ,  Q = q x x + q v r ,  J = x ; y  , - x,,y;, O = . x $ + y $ ,  ~ = x ; x , + y ~ y , ,  and a=x?+y?.  
The grid equations, having already been solved, provide the values of the above mapping 
coefficients. Similar expressions can be arrived at for other derivatives of 6.” Second-order- 
accurate one-sided difference operators are used on the boundary, similar to Yeung and W U . ’ ~  
The system of linear equations thus obtained is solved by Gaussian elimination based on LU 
decomposition. 

3.2. Treatment of boundary conditions 

The potential on the free surface is obtained by integrating equation (2) using a two-step 
predictor-corrector method. For the wavemaker case, the free surface wavemaker intersection 
point is made to satisfy the Neumann condition corresponding to the wavemaker, and its vertical 
motion is dictated by the free surface kinematic condition. For the small-amplitude motion of the 
wavemaker we are considering, no singular behaviour is observed at this point. Although the 
rightmost point on the free surface is a Lagrangian particle, its position is updated at every time 
step using interpolation to keep its horizontal position constant. This is done to avoid extremely 
skewed grids at the corner when a wave trough or crest passes through it. Since clustering of free- 
surface marker particles will lead to instability if the time step is not correspondingly reduced, 
they are redistributed at every time step. The new positions of the particles are chosen in such 
a way that the ratio of the arc lengths between nodes to the total arc length of the free surface 
stays unchanged in time. This is accomplished by interpolation using cubic splines. 

To use the approximate open boundary condition equation (6), we follow a scheme similar to 
that of Jagannathan,” which is a modified form of the one proposed by ChanZ8 To obtain the 
potential at the open boundary at time step n +  1, we rewrite equation (6) as 

$ -$“-cu“At, 

where u is the velocity in the x-direction and the superscripts refer to the time steps. Clearly, we 
need the phase velocity c. Since this is a time-dependent non-linear process, such a c does not exist 
in a strict sense, but if the wave field is predominantly of a single frequency, a phase velocity of 
that wave would be a good approximation. c can be estimated numerically at different free surface 
points, designated by the index i, neighbouring the free surface and open boundary intersection 
point by rewriting equation (6) as 

(13) n +  1 - 

where i, is the index of the rightmost free surface node. The points where u is very small are 
discarded and the average of the cs obtained for the remaining points is chosen. Some numerical 
experimentation showed that the number of points to be averaged over is not very critical. 

As a comparative alternative we also used a damping layer similar to that proposed by Baker et 
dz9 In this method the waves in the far field are damped out artificially. The free surface 
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boundary conditions (equations (2) and (3)) are rewritten in a more general form as 

D@/Dt = f I V@ l 2  - y - v(x)@, 
Dx/Dt = V4 - V(X)(X - xO) ,  

(15) 

(16) 
where v ( x )  is an artificial damping parameter and xo denotes the initial position of the Lagrangian 
marker particles, i.e. their position when the fluid is at rest. A specific length on the right side of 
the fluid domain is demarcated as a damping layer where the above boundary conditions are 
applied with a positive v. To the left of the damping layer v(x)=O. For monochromatic waves 
Cointe et al." proposes a damping coefficient of the form 

where cr is a dimensionless parameter and xd is the location of the point where the damping layer 
begins. Other forms of v(x) are also possible. 

4. A TEST PROBLEM 

Before we proceed to the wave diffraction problems, we must verify whether or not the numerical 
wavemaker is generating waves that are adequately accurate for our purpose. Hence we carried 
out some simulations where we solved the wavemaker problem in the absence of obstacles in the 
tank. 

To obtain an incident wave of a desired amplitude, we used linear theory results relating the 
wavemaker amplitude to the wave amplitude. In the numerical simulations, having specified the 
estimated paddle amplitude, we used the following procedure to measure the amplitude of the 
generated wave. 

1. The time record of the wave was obtained at many closely spaced stations along the length 
of the entire tank. Assuming harmonic data, a Fourier series analysis of the wave elevation 
t i (x ,  t )  of the form 

y(x, t)=Ca,,(x) sin(not+b,t) 
n 

was conducted to obtain an(x) at the different stations. The incident wave amplitude al 
referred to previously is a, in the above expansion, assuming that there is no reflection from 
the open boundary. In the presence of a reflected wave of amplitude aR, with frequency equal 
to that of the incident wave, a, takes the form 

a,  (x)=J[a: + &2alaR COS (2kx +&)I, (19) 
where bR is a phase angle. Owing to the limitations of the grid spacing, results obtained for 
harmonics higher than two are considered unreliable. 

2. The evolution of the discrete spectra in time was studied to check for a steady state, i.e. the 
amplitudes of the first and second harmonics obtained by Fourier analysis for different 
intervals of time were plotted along the length of the tank. A steady state was assumed to 
have been reached when the amplitudes, as a function of x, did not change with time. 

In Figure 3 we show an example of such a spectrum. The parameters for this case are d =  7.46 and 
paddle amplitude A = 0.035. The incident wave amplitude, according to linear theory, is 0.07. The 
curves shown are the amplitudes of the first and second harmonics of the wave (al and a 2 )  as 
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0 1.46 14.92 22.38 29.84 
X 

Figure 3. Amplitudes of the first- (al) and second- (a,) harmonic components of the wave record along the length of the 
tank as obtained by a Fourier series analysis of the wave record between t=9T and 127‘; 1=7.46. The damping zone 

extends from x = 24.54 to 3200 

a function of the position of the tank. The Fourier series was calculated over the time record from 
91” to 12T. The solid curves are obtained using the Orlanski condition described in the previous 
section, while the dashed curves are obtained using a damping layer. The length of the damping 
layer was chosen as one wavelength and the value of c i  in equation (17) was taken as unity. 

We make the following observations. 

1. 

2. 

3. 

,4. 

5 .  

ti. 

The curves did not differ by much when the Fourier series was taken over different time 
intervals. Hence we can assume that a ‘steady state’ has been attained over a certain length 
of the tank. 
The absence of modulations of the form (19) indicates that reflection from the open 
boundary, if present, is minimal. 
The incident wave amplitude is close to the linear theory value for the small values of paddle 
amplitude which we are considering. 
The amplitude of the second harmonic is resolved very well in spite of its small value. From 
Stokes’ second-order wave theory” the amplitude of the second-order waves should be 
a2k/2 = 0.00206. The numerically obtained value is very close to this number, though there 
are slight variations along the length of the tank. 
Close to the wavemaker we have non-linear evanescent modes, i.e. standing waves, in 
addition to purely progressive waves. The figure indicates that we should place the body at 
least two wavelengths away from the wavemaker to avoid such evanescent effects, but to 
keep the computational efforts low, we did not always follow this criterion. 
The results obtained using the Orlanski condition and the damping layer are close, except in 
the damping zone itself where the decay of the amplitude spectrum is clearly noticeable. We 
preferred to use the former since it requires a smaller computational domain and does not 
require ‘tuning’ (i.e. experimentation to find the correct value of damping). 

To check the effectiveness of the Orlanski condition, we also plot the variation of the computed 
phase velocity with time in Figure 4. The approximation is considered good for a reasonable 
amount of time, but the errors in the computed phase velocity tend to increase after sufficiently 
long time, especially after the incidence of waves of higher frequencies, as pointed out earlier in 
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t l T  

Figure 4. Estimated ‘phase velocity’ for the open boundary for 12 oscillations of the wavemaker (solid curve). The case 
shown here corresponds to a wavelength of 7.46 and water depth of 8.0 in the presence of the cylinder. The open boundary 
is 4.29 wavelengths away from the wavemaker. The dashed line corresponds to the phase velocity of a linear wave of the 

chosen wavelength 

Section 2. The large oscillations at later times are associated with large fluctuations in the 
velocities at the free surface and open boundary intersection point. The calculated phase velocity 
is restricted to a maximum value of Jd, where d is the depth of the tank, since higher values are 
not valid from physical considerations.22 Although not shown here, the computed phase velo- 
cities in linear calculations are identical to non-linear values, at least up to t /T= 10. 

The numerical calculations did not show sensitivity to the size of the time step as long as the 
Courant condition At d Ax/c was satisfied, c being the phase velocity of the primary (fastest) wave. 
The grid size chosen was found to be adequate to resolve second-order waves through numerical 
experimentation. As an indication of the accuracy of this type of computation, one can check to 
see if the energy theorem according to Y e ~ n g ~ ~  is satisfied. To do so, we define the following 
quantities: the energy in the fluid domain as the sum of its kinetic and potential parts, 

the work done by the paddle-type wavemaker, 

the energy flux out of the open boundary, 

and finally the relative error 

W(t)+ W’(t)--E(t) 
W(t )+  W’(t) ’ 

c.( t )= 

which should be close to zero for an accurate numerical computation. In the above equations R is 
the fluid domain, dR is its boundary and X is the open boundary (see Figure 1). In Figure 5 the 
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Figure 5. Relative error 8 (equation (23)) plotted as a function of time; i= 16, paddle amplitude equals 005 

function Q ( t )  is shown. The parameters for the problem are A = 16, length of the tank, 32, and 
A=0.05. The size of the grid is 80 x 20. We see that the errors are within 5% until the open 
boundary condition begins to fail around t/T= 7. 

In all the cases with the cylinder we used a 119x 27 grid. Unlike the case with just the 
wavemaker alone, where the grid was uniform in both directions, we used closely spaced grids 
near the cylinder and coarser grids downstream. This gave higher energy losses owing to 
numerical dissipation caused by the coarse grids. 

5. RESULTS AND DISCUSSION 

We will divide this study into three parts, the first two corresponding to experimental works 
which the computations attempt to reproduce, and the breaking wave simulation will be 
discussed in the third. 

The objectives of the two experimental works were slightly different. Chiu' conducted extensive 
experiments for various values of submergence of the cylinder and wavelengths and tested the 
region of validity of linear theory. He found marked deviations for shallow submergence where 
second and higher harmonics of the incident wave were generated downstream of the cylinder. 
Although he realized the importance of the wave slope, all his experiments were conducted with 
small-amplitude waves since his objective was to compare with the linear theory results of 
Ogi l~ ie .~ '  In addition to determining the region of validity of linear theory, Grue and Granlund' 
also determined the region where second-order solutions4 were adequate and proceeded to 
analyse the strong, local, non-linear behaviour in the presence of large-amplitude waves. 

In the following two subsections we will describe the results of the numerical simulations, 
attempting to capture the non-linear phenomena observed in the experiments. In Section 5.3 we 
will discuss a case similar to one studied by Brevig et aL9 and compare our results with their 
boundary-integral method solutions. For all the simulations described here, the length of the 
tank, the depth of the tank and the distance between the wavemaker and the centre of the cylinder 
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(see Figure 1) were held fixed at 32, 8 and 16 respectively. This configuration is deemed sufficient 
to represent the case of deep water for the wavelengths that we choose to study. 

5 .  I .  Efect of wavelengtA and suhnirrgence 

The cases studied in this subsection will correspond to the experiments of Chiu.' One of the 
primary conclusions of both experiments was that the non-linearities are important only when 
the gap above the cylinder is less than one radius (i.e. h/r  < 2.0). A few numerical experiments 
showed that this was indeed true. Hence we chose the cases corresponding to the shallow 
submergence values of h/r= 1.5 and 1.275 as used by Chiu.' For each of these submergence values 
four different wavelengths were tested. Since we are using a finite difference method, high 
resolution of the grids near the cylinder forces us to have closely distributed nodes on the free 
surface, which in turn necessitates smaller time steps to satisfy the Courant condition At d Ax/c, 
c being the phase velocity of the fundamental wave. Hence we confine ourselves to A< 16 for our 
study to keep the computational time within reasonable limits. A summary of the different cases 
studied is presented in Table I .  

The simulation can normally continue until errors due to the approximate open boundary 
(equation (6 ) )  cause incorrect wave elevations. This begins to happen when higher-order waves 
arrive at the open boundary. As shown in Table I, simulations could not be continued for a long 
time for the hlr = 1.275 cases and hence the diffracted waves downstream could not be analysed. 
However, the simulation was long enough to determine the 'steady state' oscillatory forces for 
cases S-1, S-3 and S-5 of Table I.  

An illustration of the wave pattern is quite instructive at this time. In Figures 6-8 we show 
how the wave pattern changes with the submergence of the cylinder. In non-dimensional units the 
cylinder is at x=  16, the origin corresponding to the mean wavemaker position, and the 
wavelength is 7.46 for all three cases. The figures show the instantaneous free surface elevations at 
every 4/75th of a period starting from t = 4 T  (see equation (5)) and ending at t = ST, t being the 
non-dimensional time. In Figure 6 the cylinder is deeply submerged (h/r = 2.0). No non-linear 
effect is apparent in the figure or in the analysis of the data. For a slightly more shallow 
submergence (h/r  = 1.5, Figure 7) the presence of the second harmonic riding over the primary 
wave is clearly visible. In such a situation second-order theory in small-wave-amplitude expan- 
sion4 would be expected to give good results. The necessity of fully non-linear simulations become 
apparent with an inspection of Figure 8. Here numerous short waves are generated every time the 

Table I. Description of the cases studied. These correspond to the shallow submergence cases studied by 
Chiu' 

Paddle 
Case hlr amplitude kr 2kh 1, Length of simulation 

s-2 
s-4 
S-6 
S-8 

s- 1 
s-3 
s-5 
s-7 

1.500 0.035 
0.035 
0.050 
0.050 

1.275 0.035 
0.050 
0.050 
0.050 

0.8417 
0-6066 
0.498 1 
0.3976 

0.84 17 
0.6024 
0-497 1 
0.39 15 

2.5251 
1.8198 
1.4943 
1.1928 

2.1479 
1.5481 
1.2707 
0.9983 

7.46 
10.35 
12.61 
15.80 

7.46 
10.35 
12.6 1 
16.05 

12 periods 
8 periods 
8 periods 
6 periods 

Short waves develop after 9 periods 
Short waves develop after 6 periods 
Wave breaks after 45 periods 
Wave breaks after 1.5 periods 



1122 R. W. YEUNG AND M. VAIDHYANATHAN 

3.5 

2.5 

1.5 

0.5 

/ 

I [  I I 
0 10.0 20.0 30.0 40.0 

X 

Figure b. Wave elevations during 4T-8Tin 75 steps; A/r=7.46, h/r=2.0 
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Figure 7. Wave elevations during 4T-8T in 75 steps; I./r=7,46, h/r= 1.5 

wave crest passes over the cylinder. Eventually, waves too small to be resolved by the grid are 
generated and the simulation has to be stopped. 

In his experiments Chiu' had wave probes located upstream and far downstream of the 
cylinder. A Fourier analysis of the time record was conducted to obtain the wave spectrum. Since 
computed records are always limited in time, we use the analysis procedure described in the 
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Figure 8. Wave elevations during 4T-8T in 75 steps; i/r=7.46, h / r =  1.275 

0 8.0 16.0 24.0 32.0 
X 

Figure 9. Amplitudes of the first and second harmonics of the transmitted wave (solid and dashed curves respectively) as  
obtained by Fourier series analysis of the wave elevation. plotted along the length of the tank (case S - 2 )  The horizontal 
dotted lines show the amplitude of the first-order wave from the linear wavemaker solution and the corresponding Stokes 

second-order component 

previous section (equation (1  8)). For values of x upstream of the cylinder we denote the value of 
u,(x) by a,, and for points downstream of the cylinder by u,,, and a, E u l l .  In Figure 9 an example 
of such a spectrum is shown. The curves shown are the amplitudes of the first- and second- 
harmonic waves (a l  and u 2 )  as a function of the position in the tank, obtained by Fourier series 
analysis of the time record between t = 5T and 7T. A variation in the primary wave amplitude 
upstream of the cylinder (aIl) is due to a standing wave generated close to the wavemaker. It 
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should also be noted that there is no second-order wave component upstream of the cylinder, 
except for the Stokes' component (al2 = iu: k),  implying that the higher harmonics are generated 
only downstream of the cylinder. 

As previously mentioned, for the shallow submergence case simulations could not be carried 
out long enough for steady state results to be reached. For h / r =  1.5 the results of the above 
analysis are presented in Figure 10. The values plotted are u+,/u:, where uTn is the amplitude of 
the first and second-harmonic components in the diffracted wave as obtained by Fourier analysis. 
Good agreement with the experimental results can be seen. It should also be noted that the 
transmission coefficient for the first harmonic is much less than unity, the value predicted by 
linear theory. 

A Fourier analysis of the computed force was conducted to obtain the amplitudes of different 
harmonics. The first-order vertical and horizontal components are almost the same. For h/r = 1.5 
the second-order components are very small. Difficulty was experienced in obtaining second- 
order forces for h/r = 1.275 owing to the short duration of the simulation. Larger-amplitude waves 
and much finer grids would be necessary to obtain reliable results for the higher-order compon- 
ents of the force. The vertical force function is shown in Figure 11. Here we have adopted the non- 
dimensionalization used by Chiu,' whose non-dimensional force function 8 is related to ours 
(denoted by F )  by 9 = F / l u l .  Note that such a non-dimensionalization of force assumes linearity. 
Experiments show good agreement of forces with linear theory results for h/r  = 1.5, as do our 
computations. Marked differences in the vertical and horizontal forces were observed in the 
experiments only for case S-7 (h/r= 1.275, i / r  = 16.05). However, owing to the occurrence of wave 
breaking at about t =  1.5 7; we were unable to achieve steady stute results for this case. 

It is interesting to observe the mechanism of the wave breaking when a long wave passes over 
a shallowly submerged cylinder. For case S-7 the velocity vectors and the surface elevation a few 
time steps before breaking are shown in Figure 12. One can observe the interaction of the 

1.0 I-- 

0.6 -I 

0.2 

n = 2  

0 0.2 0.4 0.6 0.8 1 .o 
kr 

Figure 10. Squares of the first-order (upper curves) and second-order (lower curves) components in the transmitted wave, 
non-dimensionalized by the incident wave amplitude a, .  The solid curves correspond to the computed values and the 

dashed curves correspond to the experimental results of Chiu' 
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Figure 11. Force coefficients for (a) h/r= 1,275 and (b) h/r= 1.5 as a function of kr: -, linear theory;30 +, experiment;’ 
0, computed values 

accelerated backflow of the outgoing wave in the shallow water region above the cylinder meeting 
the steepening incoming crest to form a small ‘shock’ wave just upstream of the point of minimum 
submergence. For deeper submergences of the cylinder, this splash-like phenomenon generates 
small ripples downstream of the cylinder as the crest passes over it (Figures 7 and 8). 

5.2. EfSect of wave slope 

cylinder. To analyse the result, they made the following decomposition of the wave field. 
Grue and Granlund’ studied the diffraction of an incident Stokes wave by a submerged 

The incoming wave is a small-amplitude Stokes wave whose surface elevation is given by 

~ ( x ,  t)=acos (kx-ot)++a’kcos [2(kx-ot)], 
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Figure 12. Long wave breaking over a shallowly submerged cylinder (h/r = 1,275,2/r= 16.05): (a) wave elevations at time 
steps 213-232, At = T/150 (b) velocity vectors at t /T= 1.5 

and downstream from the cylinder, besides a Stokes wave of reduced amplitude, there is a free 
wave of twice the frequency as well as higher-order modes. The surface elevation is therefore given 

y(x, t)=ul cos ( k x  -cot + d,)+ia: cos [ 2 ( k x  -cot+ dl)]  

by 

+ u2 cos (4kx - 20 t  + d2 ) + higher-order modes, (25) 
whlere u2 is the amplitude of the free wave. 
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The experimental results show that for 0.2 < a/D < 0.6 and 0.3 < kr < 1.3, a 2 / r  is a function of kr 
and D/r only, where D=h-r  is the clearance between the cylinder and the undisturbed free 
surface. Thus contrary to the second-order results of Vada,4 which predicted a quadratic 
relationship, a2 does not change with the variation of a for a/D > 0.2. 

We conducted similar numerical experiments for h/r = 1.5 and ak = 0.3976 and measured a2 by 
using the Fourier method described in Section 3.1 to obtain the coefficients as defined by 
equation (25). We were successful in capturing the ‘saturation’ phenomenon, which can be seen in 
Figure 13. Grue and Granlund’ observed wave breaking over the cylinder at ak=0.085.  In our 
simulations breaking occurs for 0075 < ak < 0.085. It should be mentioned here that the bound- 
ary integral method of Cointe et al.’ has also reproduced these non-linear phenomena. 

5.3. Wave breaking over a cjdinder 

In the above cases we observed that the breaking of waves is one of the limiting factors in the 
numerical study of the non-linear phenomena. Wave breaking is an important non-linear 
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Figure 13. Growth in amplitude of the second-order free wave with increase in amplitude of the incident wave: 
-, second-order t h e ~ r y ; ~  0 ,  experiment;’ +, present method 
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Figure 14. Comparison of wave elevations computed by our method and boundary integral method. The solid curve is 
the elevation after 0.356T, while the dots represent t=0,357T, T being the period of the wave 
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-12.0 

phenomenon in its own right and deserves special study.*' Ideally, one would like to observe the 
breaking of an incoming stream of waves, but the breaking of the early transients makes this 
approach impractical for numerical study. Hence less realistic, but numerically more appealing, 
periodic boundary conditions are used to study the breaking of large-amplitude waves. 

Brevig et aL9 conducted a comprehensive set of calculations for breaking waves over fixed and 
freely moving submerged circular cylinders using an integral equation method. More extensive 
calculations for free-surface-piercing bodies have been conducted by Grosenbaugh and Y e ~ n g . ~ '  
We will try to reproduce here one of the cases presented in Reference 9 to demonstrate the ability 
of our finite difference method to handle such extreme situations also. 

In the case presented here we have a cylinder of unit radius in a water depth of 12 under a wave 
of length 22. The submergence of the cylinder centre is 6 and the amplitude of the wave is 2. 
At the first time step we impose the velocity potential of a linear progressive wave of a chosen 
amplitude and wavelength on the actual free surface and solve the boundary value problem 
subject to periodicity conditions in the presence of the cylinder. The solution thus obtained is 
taken to be the initial condition and the free surface is allowed to evolve from there. We were 
successful in performing simulations for a short time after the free surface becomes multivalued 
and our results match with the boundary element results of Brevig et a1.,9 who also used the same 
type of initial condition. The results are presented in Figures 14-16. Unlike the case of the integral 
ealuation method, we can now obtain a full description of the details of the flow field as part of the 
solution processing, thus enabling one to have a better grip of the flow physics. Figure 16 in 
particular demonstrates well the capability of our grid generation technique in handling the 
geometry of the type of flow encountered. 

I I ,  ! , I  

1 

0 -6.0 
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(c)  (4 

Figure 16. The physical domain at various stages of breaking wave propagation over a cylinder: (a) t=O; (b) t=0,12T; 
(c) t=0,24T; (d) t=0.36T 

6. CONCLUSIONS 

Two-dimensional problems concerning the non-linear interaction of water waves with submerged 
obstacles were studied using a finite difference method. The subject of study involves the ability to 
handie radiation, diffraction, wave breaking and open boundaries. 

Our numerical results show good agreement with experimental results and analytical results 
where applicable. Good predictions of the forces and transmission coefficients have been ob- 
tained and in particular the 'saturation' phenomenon of the second-order free wave downstream 
of the cylinder has been accurately reproduced. Although not as computationally efficient as 
boundary integral methods, the present method can serve as a foundation for future works to 
include the effects of viscosity, which could be important in some of the cases studied here. Owing 
to the versatility of our grid generation technique, fairly complicated geometries have been 
tackled, including scenarios where the waves are multivalued functions. 

Wave breaking and the open boundary condition prove to be limiting factors in long time 
simulations. For studying the diffraction of waves over bodies other than circular cylinders, there 
also exists a difficulty in creating an ideal incident wave that would not be contaminated by 
reflection from the body. Absorbing boundaries can be a promising means of overcoming some, 
but not all, of these difficulties. 
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